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8.1 Executive Summary

The RIT NAIC project consists of the development of techniques that can
be applied to speaker independent, continuous speech, large vocabulary
speech understanding systems. It is our belief that Artificial Intelligence
(Al) methods can provide new insight into the extremely difficult task of
building these systems. This Al approach is in contrast to the traditional
acoustical engineering approaches which have been used in the past.

The ultimate goal of our speech understanding research is to
demonstrate an end-to-end system starting from the acoustic waveform and
ending with a knowledge representation of the utterance. Such a system
would provide us with a framework for both demonstrating our speech
understanding techniques and comparing them with more traditional
methods of speech and signal understanding. We have completed a speech
and signal processing workstation which gives us the capability to assemble
this end-to-end system.

Within the system there exist several milestones which represent an
increase in the level of understanding along the hierarchy from acoustic
waveform to speech understanding. These milestones are: (1) Derivation of
the broad phonetic classes which represent the utterance, (2) derivation of
the phonetic transcription of the spoken utterance, (3) the ability to map
these (possibly errorful) phonetic transcriptions onto a large vocabulary, (4)
a method of extracting only the plausible parsings from these transcriptions,
and (5) the ability to build a knowledge representation of the utterance from
a plausible parse using all possible sources of syntactic, semantic, and
domain knowledge. At this time there is ongoing research at each of the
above levels.

We have been attacking the broad phonetic classification problem from
two fronts. The first has been statistically based classification using both K-
means clustering based on Euclidian distance measures and multivariate
maximum likelihood distance measures. The second approach has been
based on the use of back-propagation neural networks. Both approaches
train on low-level features of the signals that are most closely associated
with phonetic content.

Our work in the derivation of phonetic transcriptions from broad
phonetic classes is based on looking for low level features that can be used
to classify a segment of known broad phonetic category into the correct
phoneme. Our first research in this area was an expert system to identify
fricatives. We have just begun in this past year work on classifying stop
consonants. A new project, beginning in the last year of the study, will use
neural network classification techniques to classify vowels from vowel-like
segments.




We have made a single attempt at using Dynamic Time Warping (DTW)
techniques to parse errorful phoneme strings into words from a vocabulary
of approximately 800 words. We have found that this technique is
computationally expensive and produces many words strings in addition to
the correct string. We plan to examine some other less computationally
expensive methods and compare their results.

Our work in determining plausible parsings is still under consideration.
Our work in natural language understanding has progressed to the system
design phase. We will be looking to apply conceptual analysis techniques to
the domain of cockpit speech in fighter aircraft. This work focuses on the
areas of ill-formed and ungrammatical input.

8.2 System Architecture

The architecture of the system has moved from a paper design to an
actual computer system. We have completed our speech research software
environment which runs on the TI Explorer and microExplorer systems.
The system is called ESPRIT and will be the development, testing, and
delivery bed for the speech understanding system.

ESPRIT allows us to implement our various speech understanding
algorithms in the LISP environment and to build both top-down and bottom-
up implementations of the system. Software that has been completed can be
implemented under ESPRIT while segments of the structure which have not
been completed or are under development may be stubbed or simulated or
th;: data may be hand-massaged before passing it to a higher level piece of
software.

Much of the work done in the past year has been the implementation of
software running on Unix/C environments into the ESPRIT system. We have
also begun coding several of the fine phonetic classifiers and linguistic
modules. The phonetic string parsing system and cockpit speech
understanding system are being developed on the Explorer so no porting
will be necessary.

8.2.1 Software Architecture

The software architecture of the system is largely unchanged from the
past two reports. The system is still a knowledge based system attempting
to capture the knowledge that experts use when reading and interpreting
spectrograms. Most of the low level feature extraction work has been
completed and we are near completion of the next higher level, broad
phonetic classification. For the sake of continuity, we will briefly review the
software architecture of the system.

A digitized speech sample is processed using standard signal processing
algorithms to obtain low-level features of the signal over time. These
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algorithms include FFT and LPC analyses, formant and pitch tracking,
energy, zero-crossings, etc. These features are then used as input to
classification modules which attempt to recognize phonemes. This first
transition from raw waveform to feature sets provides us with a significant
reduction in data without sacrificing the knowledge necessary to perform
intelligent recognition further up in the system hierarchy.

The first classification module determines broad phonetic categories.
This module attempts to segment the signal into discrete segments based
on the categories: vowel-like, strong fricative, weak fricative, and silence.
These segments can be thought of as regions of the utterance that are
roughly homogeneous, and they represent the results of the first coarse
phonetic segmentation of the utterance.

These broad phonetic segments are then analyzed by modules which
attempt to assign phonetic labels to the broad phonetic segments. These
modules do not necessarily pick a single label, but more often they assign
labels with probabilities, thus allowing higher level processes to
disambiguate any inconsistencies and avoiding serious losses of data in the
low level routines. This approach of assigning confidence factors to several
labels for a segment parallels the manner in which human spectrogram
readers perform.

Once this lattice of possible phonetic labels and probabilities has been
generated a high-level module hypothesizes word candidates from a lexicon.
At present we have investigated the use of Dynamic Time Warping to
hypothesize words from a phonetically ordered lexicon. High level
knowledge of the English language is incorporated at this level using the
probabilities of two English phonemes occurring in succession and the
probabilities and locations of common phonetic errors such as insertion,
deletion and substitution. We are using the same lexicon for this level as we
will use in the higher level natural language understanding system.

Once we have a candidate word hypothesis we will generate a single
utterance from the candidate words. This selection is based on the
confidence factors generated by the word hypothesizer and world
knowledge available about the domain. This utterance will be considered
the correct transcription of the raw signal and will be passed on to the
natural language understanding system. The natural language understanding
system will provide feedback to this level to resolve ambiguities or have
another utterance hypothesis made if the first attempt could not be
understood. This level of the system is best described as the utterance
hypothesizer.

The highest level of the system is a natural language understanding
system. This module will attempt to build a semantic representation of the
input utterance using all possible high level knowledge sources including
domain knowledge, syntactic and semantic information, and auditory cues
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such as pauses and inflection. Conflicts that cannot be resolved at this level
will communicate with the utterance hypothesizer to get a better
representation of the spoken signal. The final output of the system will be a
model which captures the intent of the spoken utterance.

The software architecture just described is primarily a data driven or
forward chaining type of control strategy. This strategy is based on the
assumption that a reasonably accurate phonetic transcription of the raw
speech signal can be produced by the low level modules in the system.

8.2.2 Hardware Architecture

Most of the work of moving the project to the TI Explorer/Odyssey
workstation has been completed. The TI Explorer is high performance Lisp
Machine. It contains a central processor which uses Common Lisp as its
machine language thus achieving speeds not possible with interpreted Lisp.
The Odyssey board provides four TMS 32020 signal processors which can
execute the traditional LPC and FFT algorithms at better than real time.
These processors can operate in parallel or serially, and up to 16 boards may
installed. This provides a maximum of 64 processors all performing in
parallel.

We have upgraded our two Explorer 1 workstations to Explorer II
workstations which provided a 500% increase in the execution speed of
most system functions. We have also acquired two TI microExplorers which
provide Explorer I performance and capabilities on a board which drops into
an Apple Macintosh II. These microExplorers have increased our
development capabilities tremendously by allowing more access to the LISP
environment for our staff and consultants.

The speech analysis workstation that had been under development has
been completed. It is the Explorer Speech Processing workstation at
Rochester Institute of Technology (ESPRIT). In the next section we will
describe ESPRIT and how it is used as the hardware framework for
developing and delivering the speech understanding project.

8.2.3 The ESPRIT System

ESPRIT is a speech research development environment that runs on the
Texas Instruments Explorer Lisp workstation, optionally augmented with
one or more Texas !nstruments Odyssey Signal Processing boards. This
system also will run on the TI microExplorers which do not have Odyssey
boards.

ESPRIT's main goal is to provide speech scientists, linguists and
engineers an intuitive software environment in which to study speech
signals and to provide tools for conducting speech research. The basic
functions of ESPRIT are to collect, process, and graphically display raw and
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processed speech signals in ways that are useful to speech scientists. No
prior knowledge of Lisp or any other programming language is necessary,
and no prior knowledge of the operation of the TI Explorer is required in
order to perform a wide variety of speech processing tasks.

Users may use ESPRIT interactively to perform simple operations one at
a time and display the results after each operation is performed. These
operations and displays include raw waveforms, FFT and LPC spectrograms,
and other useful parameters and features that can be extracted from speech
signals.

Users also may build modules made up of simpler operations and displays
to perform complex tasks. This feature allows users to literally "draw" a
sequence of speech processing functions and display directives and then
execute the resulting "program” to perform the task that was drawn. This
allows a user who is not a programmer to put together existing programs
into a configuration that performs some desired task without having to type
a single line of code.

The ESPRIT user interface takes a mouse-and-menu approach, and in
fact, the entire system can be run by clicking the three buttons on the
Explorer's mouse or by clicking the single mouse button in combination
with a few keystrokes on the microExplorer. Help is available at all times
for all commands, both in the form of mouse command documentation,
which is always displayed automatically, and in the form of more extensive
documentation, which may be displayed easily on demand.

Care was taken in the design of ESPRIT to make the displays and mouse
buttons as consistent as possible. This helps the user to develop sound
instincts for how to use the system and view the displays. For users who feel
a need to type keystrokes instead of navigating through menus, all
commands on all menus have corresponding keystroke equivalents.

Both the module building capabilities and graphical display capabilities
are heavily used in implementing the speech understanding project on the
Explorers. The section of ESPRIT used for building modules is the Module
Editor. Through the Module Editor users can build up complex processes
by describing how the pieces fit together graphically. Figure 8-1 on the next
page shows the software architecture of the speech understanding system as
it is built under ESPRIT. Figure 8-2 shows some of the graphs that ESPRIT
can generate. These graphs allow us to evaluate the signal processing
algorithms used in the system and to make exact measurements from the
analyses.




Figure 8-1 Meta-Module of Speech Understanding
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Figure 8-2 ESPRIT's Graphical Capabilities
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The ESPRIT environment itself is an object-oriented system built around
the following conceptual objects: data objects, processes, displays and meta-
modules. Data objects are data structures which hold raw speech,
sequences of FFTs or LPC spectra, sequences of phonemes or words. These
data objects may be permanently stored as files or dynamically created and
destroyed throughout the execution of the user's application.

Processes are TMS 32020 code or LISP code which are used create,
analyze, and destroy the various types of data objects. ESPRIT contains a
large number of signal processing routines that may be used by any
application. Users may also develop their own processes and incorporate
them into the ESPRIT environment.

Displays are the graphical windows which are used to display and
measure the data objects. Several types of displays are seen in Figure 8-2.
The environment stores the knowledge to correctly display the various types
of data objects, or the user can specify a different type of display other than
the default.

The most important capability provided by ESPRIT is ability for users to
build their own meta-modules. A meta-module is a directed graph that
contains process objects, display objects and possibly other meta-modules
as well. A graphical interface allows the users to draw their applications.
Figure 8-1 is a meta-module which describes the speech understanding
system.

8.3 Broad Phonetic Classification
8.3.1 Overview

We have completed one phase of our work in broad phonetic
classification. A system known as CLASS has been developed which is able
to classify segments of continuous speech as vowel-like, silence, weak
fricative or strong fricative. These segments can then be passed to other
more specific classification schemes under development that will attempt to
identify the exact phonemes present in these segments. The CLASS system
examined two classification schemes and three decision making
architectures.

The two classification schemes examined were both cluster-based
analyses. In the first scheme a maximum likelihood clustering algorithm
was used and in the second scheme a K-means algorithm was used. CLASS
used tree-based decision architectures to maximize the probability of
correctly separating dissimilar classes. For example vowel-like segments
would be classified on the opposite side of the tree from silent segments as
they are not very similar with respect to the features generated by the signal
processing feature extraction routines. Both the classification schemes and
tree structures will be discussed in Sections 8.3.3 and 8.3.4.
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8.3.2 Training

The training portion of classification involves the examination of many
samples of speech data in order to learn the salient characteristics of the
categories in the decision space. The training done with respect to broad
phonetic classification involves feature extraction and cluster analysis.

In the feature extraction phase, raw samples of speech were analyzed by
various signal processing algorithms to construct a data structure which
describes the correct phonetic labeling of the speech segment and a vector
of results from the signal processing algorithms. This data structure is
known as a label/vector pair (LVP). These LVPs are then used in the
clustering analysis phase as the basis for dividing up the decision space. The
signal processing features used in the LVPs were zero crossing rate, total
energy, relative energy, peak, and spectral change.

The speech data was taken from a data base supplied by Carnegie-Mellon
University. It includes 371 utterances, of which 143 are rich in fricatives,
129 in stops, and 99 in vowels. The data base was spoken by 35 different
speakers and has been hand labeled with phonetic transcriptions. Both
training and testing data were sampled from this data base.

8.3.3 Cluster Analysis

Once the feature information has been extracted and the LVPs have been
computed, clustering algorithms assign each LVP produced in the training
data to one of the four coarse phonetic categories. The goal of this phase is
to separate the LVPs into four clusters where each cluster corresponds to
one of the four categories.

The decision making structure inherent in performing cluster analysis
can be done in many ways. It can simply look at all the features in the LVP
and make a single decision or it can be broken down into a series of smaller
decisions looking at a subset of the features during each decision. The latter
technique allows more control over the performance of the system by
providing the ability to make decisions about highly separable classes early
in the hierarchy and then make the more difficult decisions about closely
related classes later. This decision hierarchy is best represented by a tree
structure. The tree structures examined in the system are diagrammed in
Figure 8-3.
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These three different decision trees can be combined with the two
clustering algorithms to form six distinct methods for performing broad
phonetic classification. In Figure 8-3 the nodes labeled D1, D2, and D3
represent points where a decisions are made and the input is categorized as
one of the outputs (shown with arrows).

The most obvious approach to clustering is to place the LVPs into one of
the four classes based on the phonetic label of LVP which came from the
hand labeling in the data base. Knowledge of all the terminal nodes in the
tree structure determines how the data are clustered at each decision point.
The advantage of this approach is that if the phonetic label is correct, then
each terminal node will be the most complete representation possible of its
class with the given data. The drawback is that that if the label is incorrect,
bad or misleading information will propagc.te through the hierarchy.

When the clusters have been determined in this manner the next task is
to determine which features should be used at each decision point in the
decision hierarchy. An algorithm known as maximum likelihood computes
the classification based on every combination of the features. The feature set
which produces the minimum number of errors with respect to the hand
labeled section of the LVP. The classifications in this step are being made
with a distance measure to the centers of each of the clusters.

A second approach to clustering is to look only at the feature values in the
LVPs to separate the data. The K-means algorithm generates K cluster
centers (means) for data points in an n-dimensional space. Each LVP is
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considered to be a point in the n-dimensional space and the algorithm will
find four cluster centers for this data. The inputs to the algorithm are the
LVPs and K initial cluster centers. These initial centers may be arbitrary
and are often the first K data points given.

The algorithm then iteratively places the remaining data points about
these centers based on minimizing the Euclidian distance of the data points
to the cluster centers. New cluster centers are then calculated by
minimizing the the squared distances from all the points in the cluster to
the center. The algorithm adjusts the centers and clusters until the center
points stabilize. This algorithm makes no use of the labels in the LVPs as it
does the clustering. the labels are used only for performance evaluation.

8.3.4 Results of Classifying Unknown Data Samples.

Once the training is done the classification is relatively simple. Starting
at the root node in the decision hierarchy, the feature vector of the
unknown speech frame is computed. The distances are calculated from the
feature vector to each of the cluster centers associated with the children.
The node associated with the minimum of these distances is then selected,
and the process is repeated until a terminal node is reached.

8.3.4.1 K-means and Maximum Likelihood Results

In each of the results tables below there are 4 methods of measuring a
correct classification: 1) percentage of correctly classified frames out of all
frames; 2) percentage of correctly classified frames disregarding frames that
are within 10ms of a segment edge; 3) percentage of correctly classified
segments to within 10ms of the true segment edge; and 4) percentage of
correctly classified segments anywhere within the true segment.

Of these measurements the first and second are the truest tests of
performance. The second measurement is valid in that it has been shown
that hand-labeling is accurate to only about 10ms, thus errors within 10ms
of the hand-labeled boundary are not as serious a problem as errors near the
centers of a segment.

K-means 1 2 3 4
[Single Level 77% 84% 87% | 48% |
i Binary 79% 84% 91% 49% |
“ Skewed Binag 78% 83% 90% 57% |

Max. Likelihood 1 2 3 4
[Single Level 68% 73% 86% 26% |

Binary 80% 85% 91% 58% |

Skewed Bina 76% 82% 85% 54%
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" From these classification performance figures, the best classifier was the
maximum likelihood binary tree structured system. It was the best or tied
for the best in all four types of correctness measure.

8.3.5 Neural Networks for Broad Phonetic Classification

We have just started work which replaces the K-means and Maximum
Likelihood clustering algorithms with Back Propagation Neural Networks at
the decision points in the three decision hierarchies. This was done in
attempt to see if the neural network approach might find elements in the
feature set data which allow better separation of the classes than was capable
using the more statistically based clustering algorithms.

Preliminary results from this work seem to indicate that the neural
network approach provides similar results as the Maximum Likelihood,
binary-tree type of cluster-based analysis.

We also plan to use neural networks for vowel classification over the next
year of the project.

8.4 Phonetic String Parsing
8.4.1 Background

As the result of previous processing on several levels, an unknown
utterance is transformed into a string of undifferentiated phonemes (i.e. no
word boundary markers). The phonetic string parser scans this sequence of
phonemes, hypothesizing all words in the utterance that are consistent
with the lexicon. Generally, this can be accomplished by comparing
reference patterns in a phonetic lexicon with the unknown sequence. All
words hypothesized are then passed to a syntactic and semantic parser for
further analysis.

One needs to consider the potential problem of a single phonetic string
with multiple interpretations as a sentence. Ambiguous parsings can map a
single phoneme sequence into different strings of words. Matching against
entries in the lexicon will not contribute to solving this problem. There is a
need for syntax and semantic knowledge to differentiate meanings. This is
outside the scope of the phonetic string parser. What is required to solve
this problem is feedback from the Natural Language Understanding and
Utterance Hypothesizing levels of the system. We understand the important
role that this feedback plays, but until we have investigated the system
without feedback we can't correctly design this top down integration with
the high level modules.

There are three areas of complexity which prevent lexical access from

being a simple lexicon look up. Front-end errors, and the effects of
phonological recoding, are two areas which alter the symbolic
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representation of an utterance. Ambiguity that results in multiple parsings
from a single phonetic representation is the third area.

It has been observed that the front end of a speech understanding system
will at times exhibit an inability to distinguish between similar sounding
phonemes. As a result of this confusability, the string of phonemes
representing an unknown utterance may contain insertion, deletion, or
substitution errors. [COHE75], [KLAT75], and [OSIK75], show that in
continuous speech there are variations in pronunciation (especially across
word boundaries) that are not random and can be described by a set of
phonological rules. Finding lexical search methods that compensate for
phonological recoding has not proven to be a simple matter. Phonological
rules that apply within a word boundary can be handled by creating an
alternative base form (i.e. an idealized pronunciation) entry in the lexicon.
However, a more difficult problem arises when working with variations
across word boundaries. For example, the utterance “did you™ may actually
be realized as “di-ja", illustrating a deletion and insertion error. Adding
another base form to the lexicon for the word “you” (starting with the
palatal “j”), could provide for an erroneous recognition of “you”, when the
utterance may in fact be “judge”. Even with this potential problem, some
recognition systems such as HWIM [WOLF77], SPEECHLIS [WOOD75], and
the lexical access system at Carnegie-Mellon [RUDN87], have built lexicons
where each word may have alternative representations. These are generated
by application of phonological rules to dictionary base form representations.

8.4.2 Approaches To String Comparison

The two most commonly cited approaches to string comparison in
isolated speech recognition are Hidden Markov Models {LEVI83] and
Dynamic Time Warping [ITAK75]. Both methods operate on the general
principle of dynamic programming in searching for optimal paths. Although
both approaches have been extended into the domain of continuous word
recognition ([BAKE75], [WOLF77], [LOWES80], [MYERS81], [NEY 84],
[LEVI8T7]), it is not certain if they are extendible to large vocabulary, speaker
independent, continuous speech understanding systems. Neural Networks
have also been used to examine the phonetic parsing problem as well as the
relatively new field genetic algorithms.

The use of Hidden Markov Models (HMM) are used to model a stochastic
processes (Markov sources) that are not directly observable, but can be
examined through the output of sequences of symbols [RABI86]. Phonemes
and words can be thought of as the observed output dependent on the
probabilistic changes (transitions) in acoustic signals and phonemes
respectively. Through the use of training utterances and empirical
observation of a system'’s front-end performance, one can model the process
of phoneme and word generation, taking into account front-end errors,
speaker variation, coarticulatory and phonological recoding effects. Words
within the unknown uttcrance would be hypothesized as those whose
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miodels had the greatest probability of generating the observed phonemes.
The Dragon system [BAKE75], incorporated the concept of chaining Markov
processes in a hierarchical fashion, not only on a word basis, but at the
phrase and sentence level as well. The result was a finite state network of
Markov sources in which the recognition procedure looked for an optimal
path of transitions that would most likely account for the observed
utterance.

Dynamic Time Warping (DTW) is a method of sequence comparison
derived from a time sampling of some quantity that is subject to variations.
DTW has been successfully used in isolated word recognition by [ITAK75]
and [WAIB81], in addition to connected word recognition by ([MYERS81],
[NEY 84], and [WATAS86].)

An unknown utterance and a reference utterance can be thought of as two
sequences of feature vectors or tokens (phonemes). Each sequence defines
the axis of a matrix mapping the speech utterances against one another. At
each coordinate is a measure of distance or dissimilarity between the
tokens. The goal is to find a path between endpoints of the two sequences
whose distance D is minimal. This cumulative distance can then be used as
a decision criterion for recognition [NEY 84].

Applying the principle of optimization from dynamic programming
concepts [NEY 84], a recurrence relation minimizing the number of points
considered at any one time follows:

d(aj-1.bj)+w(a;,0) deletion of aj
D(ai.bj) = min {d(ai-l,bj-1)+w(ai.bj) substitution of aj by bj}
d(ai.bj-1)+w(0,bj) insertion of bj

The equation above generates the distance between any two endpoints
and at the same time minimizes the number of points that are examined.

Weighting coefficients are added to penalize for deletions, substitutions
and insertions. However, searching all possible paths is computationally
expensive. Constraints that restrict this search include controlling the
degree of slope allowed in the warp, and setting some maximum permissible
path distance. These will prune paths that would otherwise grow
excessively large.

Hidden Markov Models require the collection of empirical statistics that
describe the response of the recognition system’s front-end. The
determination of states, transitions, and associated probabilities is a
complex optimization problem. More significant is the fact that our front-
end is not complete, precluding any statistical evaluation. Dynamic Time
Warping, on the other hand, needs only the strings for comparison and the
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provision of some distance metric. The drawback to DTW is that it requires
a large number of distance calculations. A study by [LEVI83] estimated that
HMM, which uses a simpler likelihood evaluation function, requires an order
of magnitude less computation time than DTW. Also noted in this study was
that both systems achieved comparable error rates.

8.4.3 String Parsing Using Dynamic Time Warping

Central to the method of DTW is the necessity of some distance measure.
Once this measure has been determined, the process of sequence
comparison can proceed. Studies by Miller and Nicely [MILL55]
demonstrated that humans typically confuse particular consonants in a
consistent fashion. Predictable confusability patterns are also exhibited by
the acoustic-phonetic modules of speech recognition systems. Ideally, we
would make use of the front-end’s response characteristics in classifying all
phonemes as a distance measure. However, the vowel classification study by
Hillenbrand and Gayvert [HILL87] is the only portion of the front-end for
which data exists. The remainder of the data had to be extracted from
studies of human confusability by Shepard [SHEP80].

The lexical knowledge source for this study is the vocabulary taken from a
United States Air Force Cockpit Natural Language study by Lizza et al.,
[L1ZZ87]. The study provides a vocabulary of 656 words, their frequency of
occurrence, contextual use, and the number of times a word is preceded or
succeeded by other words. This information may be valuable in determining
the types of contextual effects to expect. Using a text-to-speech synthesis
system (DECtalk - manufactured by Digital Equipment Corporation) in
combination with hand coding, phonetic transcriptions have been produced
for all words in the vocabulary.

Similar to other level building algorithms (Sakoe and Chiba, [SAKO79]
Myers et al., [MYERS81], Ney, [NEY 84],) the DTW procedure moves from left
to right, finding the collection of reference patterns whose global (phrase)
DTW distance is at a minimum over the concatenation of local (word) DTW
minimums. A phoneme reference pattern is selected from the lexicon (the
selection method will be discussed below) and time-warped with an initial
portion of the unknown utterance, producing a time-normalized distance.
This procedure is applied repeatedly to the same section of the unknown,
until all acceptable word hypotheses are determined. Hypotheses that
exceed a preset minimum distance threshold during DTW calculations, or
deviate from other constraints are pruned early. This reduces the
expenditure of computational resources by eliminating otherwise wasteful
calculations. Once a set of hypotheses is generated, the position in the
unknown utterance corresponding to just after the end of each hypothesized
reference, becomes a starting point for continued DTW analysis. The process
repeats until the end of the utterance is reached leaving a collection of
possible word sequences.
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Note that, given an utterance of fixed length, and given an equivalent
distance between all reference and unknown patterns, a small number of
large words will have less total accumulated distance (globally) than a larger
number of small words. This indicates a possible heuristic that favors use of
large reference patterns for DTW prior to smaller patterns. Smith et al.
[SMIT80], suggested that large words should be hypothesized prior to
smaller words since larger words usually contain more syntactic and
semantic value.

Exhaustive search of all lexical entries is not practical with lexicons
numbering in the tens of thousands. However, the front-end of our system
is not complete, and a benchmark of system performance was to be
established. Therefore, a brute force search technique was initially
implemented, allowing an examination of the algorithms response relative to
insertion, deletion and substitution errors. Parsing times for errorless
strings was unexpectedly high at approximately ten seconds per sequence,
with a sequence containing an average of fifteen phonemes. When the same
set of strings with five percent substitution errors was tested, the times
increased substantially, from a total time of twenty-four minutes to over one
hour (with only 53 percent of the test complete).

Two steps were taken to help constrain the number of reference patterns
to be used for DTW and increase general performance. First, reference
patterns of the lexicon were organized as a hash table, indexed by the first
phoneme that could be encountered in all reference representations.
During DTW, the first phoneme in the unknown pattern provides an index
to reference patterns starting with that particular phoneme (i.e. direct
access to a subset of candidates most likely to match). This method relies
on the premise that the first phoneme in the unknown can be identified
accurately. Another assumption is that as hypothesized portions are parsed
from the unknown sequence, accurate word boundaries are realized.
However, due to probable insertion, deletion, and substitution errors, the
locations of word boundaries are not certain. Second, due to the recursive
nature of the parsing procedure, alternative parse points would cause the
parse procedure to examine the same sections of phonemes repetitively.
Using a global structure, parsings from specific segments were stored such
that if a new parsing was to begin at the same index, the previously found
parsing would be immediately available. This reduced the parsing times for
errorless strings by approximately fifty percent. The impact on errorful
phrases was not as great.

Sakoe and Chiba ([SAKO78]) detail five general conditions that typically
restrict the warping function. The first two are that the function be
monotonic and continuous. Phonemes in the reference and unknown
patterns are assumed to be time-ordered with their intervals relatively
uniform, satisfying the first two conditions. The three remaining conditions
(boundary, adjustment window, and slope constraint) are variable and can
affect the relative performance of the warping procedure. So far, these
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three conditions have been held constant until an initial evaluation is‘
performed on the most basic DTW algorithm and search procedures.

Boundary conditions (i.e. sequence endpoints) are fully known for both
the reference and unknown patterns in isolated wurd recognition. However
in continuous speech, endpoints (at the word level) in the unknown
utterance are not fully established, and can be highly variable in number and
position. Mapping a single reference word to a disproportionately long
phrase would produce an unrealistic correspondence, in addition to wasting
computational resources. Therefore, some criteria must be established for
selecting the appropriate length of the unknown sequence for DTW
comparison. Assuming the front-end’'s error rate is below 100 percent, one
can hypothesize that there is a maximum number of phonemes (including
errors) in the unknown pattern which must be examined in order to find a
word, or exhaust all possibilities. This value would be equal to the phoneme
count of the reference word, plus a buffer to allow for insertion errors that
can extend the unknown sequence. This buffer value was chosen to be the
same number of phonemes as the reference pattern.

The adjustment window and slope constraint conditions affect the degree
in which the DTW procedure accepts insertion and deletion errors. When
finding a least cost path through the distance matrix, the warping path will
cut a diagonal line with a slope of one if both patterns are time aligned.
Deviation from the diagonal indicate larger the difference between the two
patterns. Excessively long horizontal or vertical paths indicate that unusual
expansion or compression is required to match two patterns. The
adjustment window forms a diagonal corridor somewhat parallel to the
warping function. This “window” constant has the effect of limiting the
number of acceptable insertion and deletion errors.

Kruskal and Sankoff [KRUS83], Myers et al.IMYERS81], and Sakoe et al.
[SAKO78], demonstrated the use of slope constraints which defined a
parallelogram surrounding an optimal (diagonal) warping path. Calculations
that result in a path that extends beyond this boundary are terminated,
constraining the number of insertion and deletion that would otherwise
result in excessively long paths. It also precludes wasteful calculations.
Sakoe and Chiba's [SAKO78] study showed that optimum DTW performance
was maximized at a slope value of 1 in a range from 0.5 to 2. This slope
value built into the equation, results in the following recurrence relation to
be initially used for the DTW procedure:
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d(aj-1,bj-2) + d(aj,bj-1) + d(aj.by)
D(aj,bj) = min {d(ai-l.bj-l) }
d(aj-2,bj-1) + d(aj-1,by) + dlay.bj)

The equation above modifies the previous distance measure to
incorporate the parallelogram surrounding the optimal warping path.

Averaging the total accumulated distance over the reference pattern
length is used to normalize distances between hypotheses whose reference
patterns differ in length. This also favors a heuristic that looks for the
longest pattern with minimum distance. All the conditions and variables
above can be adjusted to optimize the recognition procedure.

8.4.4 Testing and Results

As previously mentioned, the system front-end is not complete and
requires that we simulate it through the use of human confusability and
vowel classification studies. Test data and error conditions must be
simulated based on those studies as well. Developing a confusion matrix for
generation of simulated errors required establishing a relationship between
perceptual distance and confusability both for Hillenbrand's and Shepard'’s
data. Initially, a logarithmic relation was tried. What resulted was confusion
probabilities that werc unrealistically low. After a number of tries, an inverse
relation of a phoneme’s distance to all other phonemes proved to be
adequate. Additionally, the following assumptions were made due to lack of
data: (1) vowels and consonants (other than liquids or glides) are not
confused; (2) diphthongs and syllabic resonants were not included, but
where represented in a word by their component phonemes.

Generation of test phrases is as follows. While advancing through the
input string, a random number generator selects the type of error
(substitution, deletion, or insertion) to occur at a given phoneme in the
string. Though assumed independent, frequency of occurrence favored
substitution errors after studies by Jelinek (1976) and Ohguro (1988)
suggested substitution errors account for between sixty and ninety percent
of the errors.

Since many factors (as described above) influence the performance of the
DTW algorithm, our initial approach was to use a simple, brute force search
technique, comparing all lexical entries to error-free unknown sequence
portions. As was described above, initial testing was slow in the extreme.
Searching the entire lexicon became prohibitive even with a lexicon of only
six hundred words. Not only was execution speed slow (on the order of
hours), but memory requirements were large. The algorithm was changed
so that the phoneme under consideration in the unknown hashes to the
group of reference words starting with that phoneme. This helped reduce
the number of candidate reference patterns, but allowed a missed
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hypothesis should the first phoneme be an error. The following example
serves to illustrate a few of the problems encountered so far. The phrase
“time and location of rendezvous™ is represented phonetically as:

taaihmaendlowkehihshaxnaxvraandixvuw
With the following errorful and equivalent parsing...
shaaihmaendxlaashihshaxnaxvraandixvuw
eye man on of rendezvous

An attempt to locate the word “time” from the starting phoneme is not
possible if one only considers candidates starting with “sh”. In this case,
reducing the candidate search space helped speed processing, but missed a
valid hypothesis. Current testing is attempting to compromise. So as not to
become too restrictive, the sets of reference patterns selected for DTW
comparison are based on the actual phoneme in the unknown, and those
that are the most highly confused with the unknown'’s phoneme.

Another problem encountered is that the lexicon for this application
consists of words whose phoneme count is very small. This has made
adjusting the threshold value quite difficult. With a low threshold value,
many of the larger word candidates are eliminated. Conversely, if the
threshold is too high, many false positives are hypothesized. This in turn
extends the search time. The algorithm now uses two different threshold
criteria dependent on phoneme count of the reference word.

Early algorithms would advance over large portions of the unknown string
if they were not able to find any word hypotheses. In an effort to find all
possible words, two changes to the parsing algorithm have been made (1)
addition of a dynamically changing threshold value; (2) a backtracking
methodology. Now when the parsing procedure moves left to right, if it
cannot locate any words, it backtracks, and resumes its forward direction
with an increased threshold value. This allows more errorful portions to pass
the DTW comparison and produce a correct hypothesis.

As would be expected, the larger the degree of error present within a
phrase, the lower the performance of the method. A set of fifty-one phrases
has been subjected to errorful conditions ranging from ten to twenty
percent. Performance was extremely low with no full phrase completions.
The number of original words found ranged from seventy-five percent (ten
percent error level) to fifty percent (twenty percent error level). The
number of false positives (words found but not belonging) also increased
substantially as the threshold increased. This too caused processing times to
increase substantially due to more parsings.
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. 8.4.5 Future Directions in Phonetic Parsing

Currently the effort is to improve upon the recognition of entire phrases.
Though complex, it seems that the subject area that requires more
investigation is the sensitivity in how the threshold value causes the
acceptance or rejection of the hypothesis during the DTW procedure. Also
requiring further research is the method used to intelligently select word
candidates. Testing and investigation of how to adjust and use the threshold
value are continuing. We will also be investigating the alternative HMM and
Neural Network approaches to this problem. We also plan to investigate the
feedback issue as it applies to DTW in more detail.

8.5 Detection and Classification of Stop Consonants
8.5.1 Background

We have just begun work on the acoustic-phonetic classification of stop
consonants in the speaker independent continuous speech environment.
The stop consonants we will be examining are /p,t,k,b,d,g/. Acoustically, a
stop appears as a short period of silence followed by an abrupt release. In
conversational English, stop consonants account for over 17% of all phonetic
occurrences [MINE78]. Therefore, definitive classification of stops over all
phonetic boundaries becomes a significant element of a complete
recognition system.

Present recognition systems are divided into two categories: template
matching and acoustically based segmentation and labeling. Template
matching is done by parametrically representing an unknown word and
comparing it to a library of known words. Template matching is not a viable
approach for a complete or large word recognition system. A system of this
configuration would be extremely slow since the English language has
approximately 300,000 words and approximately 60,000 syllables. The
second category, segmentation and labeling, attempts to recognize
phonemes, which are the smallest contrasting speech sounds for a language.
English has approximately 45 phonemes. Theoretically a system which
classifies phonemes would be much more robust than a template based
system. Thus the purpose of this research is the phonetic classification of
stop consonants.

There are two ways to address the problem. The first is to model the
human auditory system, which has been proven to be a high performance
speech recognition system. However, the human auditory system is a
complex biological machine which is not fully understood. Therefore, most
research has explored data analysis techniques. The data analysis approach
may consist of any number of numerical recipes aimed at sub-dividing the
various classes of speech down to the phoneme unit.
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Initial work developed around the idea that classification information
could be found in the acoustic speech signal. The implementation of
mathematical processing, e.g., Fourier analysis, linear prediction, etc.,
allowed for a visual spectral representation of speech over time. It was
difficult to make classifications based only on these spectra due to the great
diversity of the spectral shapes of a certain stop consonant over several
phonetic environments.

As analytical techniques have not yet been successful, speech perception
theories raise the question of how the acoustical input to the ear is
translated by the brain into speech sounds. Some researchers, e.g., Allen
[ALLES8O],[ALLES85], believe that to implement a hearing machine one must
first model the human auditory signal processing system, i.e., model the
cochlea. The literature is full of experimental data surrounding the signal
processing of the cochlea. From this data, Allen and other researchers
(Lyon [LYONS82],[LYONS83],[LYON84], Seneff [SENE88], Monderer and Lazar
[MOND87],IMONDS88], and Ghitza [GHIT88]) have generated cochlear
models. The models transform the signal to correspond with experimental
data taken from the ear. Auditory models have a tendency to accentuate
energy and frequency changes. They also appear to be much more resistant
to noisy input, i.e., they filter out noise or non-speech components. The
output from these models supports the idea that the brain makes a
fundamental distinction between speech sounds and non-speech sounds
[PARS87]. The cochlear model output constitutes a multitude of channels
representing auditory neural transmitters. From this point on the rest of
the system appears as a block box.

Thus we have disadvantages with both signal processing systems.
Acoustic signal analysis gencrates overlapping parametric data (this is not to
say that auditory models do not do the same), and the difficulty with auditory
models is that the black box classification is not understood. In either case,
the fundamental approach should be to capture input, process input, and
classify. This classification problem becomes very large when speaker
independence is considered. As a further testimony to the problem,
Edwards [EDWAS81] found that with 17 of the most conspicuous features
used in stop sound research, a decision based on a posterior probability
showed that none were sufficient, by themselves, for identification, and that
combinations of features only offered redundant information.

The input for both auditory and data analysis models is the acoustic
signal, which is composed of the speech, background noise, and
reverberation. One aspect (for speaker independence) of generating a
successful classification system is to consider a data normalization scheme.
Seneff [SENES87] showed that speaker normalization for vowel classification
can be obtained by pitch subtraction, (i.e., over some time interval, find the
average fundamental frequency and subtract it from the formant frequency).
But this approach would fail for stops since resonant frequencies are not
present. However, in recent work by Yoder and Jamieson, speaker
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"independence is addressed by attempting to normalize the acoustic signal
via the frequency domain [YODES86], [YODES87]. Yoder and Jamieson showed
improved classification performance by using a hybrid of the Mellin and
Fourier transforms. The primary attribute of the Mellin transform is its
scale invariance, analogous to the shift invariance of the Fourier transform.

A primary question to consider is whether the noise filtering and signal
enhancement qualities of the human auditory models will outperform an
analytical system aimed at input signal normalization. Although there is
evidence to suggest that the signal enhancement features of an auditory
model will aid in the identification of place of articulation, research
constraints of time and scope will limit the work in this area.

As a result of Edwards findings on the usefulness of so called
"predominant features"”, we believe that the elusive signature in the analog
sampled waveform may be better represented by a mathematical
characterization, e.g., by the moments of a distribution [FORR87].

In summary, the method proposed here will be input normalization, via
the Fourier-Mellin transforms, abstract spectral feature extraction and
compression for input processing, and classification. The classification
method will use a neural network. We expect that our previous experience
in using these networks in vowel classification, phoneme parsing, and broad
phonetic classification, will allow us to design a network that makes best use
of the abstract spectral features discussed above. The majority of our work
in this area, during the past year, has been concentrated on finding the
correct features to be fed to the network and not the building of the
network itself, hence a discussion at some length of the characteristics of
stop consonants.

8.5.2 Features for Classifying Stop Consonants

The features we used will be derived from running spectra. This will be
done because we are interested in the spectral envelope as it changes over
very short segments of time. For each spectra, we want to extract features
describing its structure, i.e., its spectral signature. The following have been
tentatively chosen for this task:

center frequency

(center of mass)

mean amplitude (distributions central value)

mean absolute deviation (variability around the mean)

skewness (characterized "width" or "variability” around the mean)
kurtosis (peakedness of the distribution)
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8.5.3 Project Description

The data files used will be those fromn the Carnegie-Mellon University
(CMU) speech database. Discrete stop consonant tokens (data files) have
been extracted from the individual utterances. This was done by first
reading the CMU label files for start and stop times of stop sounds. Every
segment of speech in the CMU label files was hand marked and classified.
In cases where a stop closure preceded the stop release, the closure and
release were combined to form a single stop token. The stop token label
files were formatted to include a start, stop, and segmentation time (in
milliseconds) and a token label to include the speaker initials, utterance
identification, stop type, and indexed suffix for the stop number of that
utterance, e.g., 536 599 570 fdmv4-1.t-h.3. This token file labeling
uniquely defines each stop sound.

A data directory was created to hold the binary stop token files for each
speaker. A C program reads the speaker-utterance stop label files and
systematically creates binary token files by accessing the utterance file in
the CMU database. The data directory is a centralized location for all stop
token data files while the speaker-utterance label files are located in an
adjacent directory.

The UNIX 'awk’ filter was used to perform several analytical functions
pertaining to the number of stops in a given class, max, min, and average
times per class, number of sub-types in each class, etc., etc.. In addition,
'‘awk’ has been very helpful in customizing files for batch execution of
programs applied to the database.

To subdivide the problem into two groups, an attempt will be made to
detect voiced vs, unvoiced stops. Searle et al., [SEAR79], claimed near 100%
separation using an algorithm which detected an energy threshold change in
time in a specified frequency range. Although Searle used a 3rd octave 18
channel filter bank to perform their voicing criteria on, Edwards found that
a simple measure of VOT accurately separated these classes 97% of the
time. If place information was available, the separation accuracy was 99%.
For the present work, the CMU segmentation markers will provide the voice
onset time. If time allows, a comparison between the subdivided and non-
subdivided classification will be done.

8.6 Understanding Natural Language - Cockpit Speech
8.6.1 Introduction

A speech understanding system [ALLE87, WINOS83] is a computer system
which takes as input the sound patterns that make up speech and produces

as output a model of the concepts and ideas expressed in the input. When
the speech that is being understood is a type of Natural Language, the
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language that evolved for human use, then speech understanding system
becomes a type of Natural Language Understanding system.

The system described here is designed to understand the spoken
language used by fighter aircraft pilots to communicate during flight
operations [LIZZ87]. It is a challenging domain due to the unique style of
communication that fighter pilots have evolved. The utterances are brief but
high in information content. There is little regard to correct English
grammar. Few connectives and qualifiers are used. Similar Navy transcripts
have been labeled "scruffy” by Richard Granger [GRAN83]. Understanding of
this language is aided by strong dependence on context, expectations,
shared knowledge, and the flight experience of the pilots.

The next section will address some of the methods currently used in
natural language understanding and introduce the methods used by the
system. Following that will be a discussion of system specifications,
implementation, and testing.

8.6.2 A Review of Natural Language Understanding

There is a great diversity in the approaches taken to understand natural
language. This diversity is a result of the many different backgrounds of the
people doing research in the area. These disciplines include: Linguistics,
Speech Perception, Artificial Intelligence, Formal Grammar Theory, and
Sociology. As a result of this diversity, the literature discussing natural
language understanding is large and often difficult to search effectively.
James Allen's Natural Language Understanding provides an excellent
summary of the work that has been done in this area. Once-the literature
has been reviewed a general design which most speech understanding
systems have followed becomes evident. This basic design for speech
understanding is diagramed in Figure 8-4.
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NUM {3s}) s1 SELL-EVENT
MAIN-V sold AGENT
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MODS (PP PREP to
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NUM {3s})))
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TRANSFER-FOR-MONEY(JOHN12,BOOK23,MARY43)
Figure 8-4

From the audio waveform a speech recognition system determines the
words that make up the utterance. This system has been oversimplified in
Figure 8-4 since at this level we are primarily interested in speech under-
standing and not recognition. The main concern in choosing a speech
recognition system is to find a system which is highly accurate within the
domain'’s normal vocabulary.

The utterance is then given to a syntactic parser which attempts to
determine how the utterance fits into the grammar being used. Almost all
parsers of English look at noun and prepositional phrases and are designed
to parse basically well formed utterances. The text just below the Syntactic
Analysis module in Figure 8-4 is the syntactic parse of "John sold the book
to Mary."

This parse of the utterance then provides the semantic analyzer with the
verbs, objects and phrases necessary to determine the basic meaning of the
utterance. At this time both the semantic and syntactic models are passed
to the contextual analyzer which attempts to resolve syntactic and semantic
ambiguity, performs some pragmatic analysis to determine appropriateness,
and finally asserts a representation of meaning of the utterance. Note that
this representation is a result of not only the given utterance but contextual
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"and world knowledge which provides the environment within which the
meaning is determined.

This is the basic methodology for speech understanding systems. The
many systems that have been developed are modifications or enhancements
on this basic design. Some of these enhancements include: better parsing
techniques; a variety of semantic parsing algorithms; two-way interaction
between the syntactic and semantic parsing to resolve ambiguity; methods of
using information about discourse, world knowledge and context to build an
"environment” for meaning.

The basic design discussed above does not apply particularly well to the
cockpit-speech domain. The major problem is that the cockpit-speech is
grammatically ill-formed. This makes parsing both a difficult problem and
not very useful. The reason for doing a syntactic parse is that the structure
of the utterance indicates the roles of the words being used. Subsequent
analysis of these roles allows us to then form a semantic interpretation. If a
syntactic parse doesn't give an indication of these roles than there is little
point in doing one. This is the case with the analysis of cockpit-speech.

It is clear that our ability as humans to understand language is extremely
robust. We are able to handle many types of errors including omissions and
ill-formed input and as Granger states, "get right to the meaning" of the text.
The work done by Schank and Reisbeck at Yale was developed with this goal
in mind. Schank and Reisbeck introduced the Conceptual Analysis (CA)
method of semantic processing which begins parsing the utterance based on
the action/event indicated by the words in the utterance. Schank and
Reisbeck state "meaning was the primary issue, and the study of syntax
should be guided by the demands of a theory of understanding.” [SCHA81].

8.6.3 Conceptual Anzlysis

The basic theory behind CA is that many words, especially verbs, identify
case-based semantic structures. The semantic parser's job is to then fill in
the values of these cases from the rest of the sentence. For example, the
utterance "John sold Mary the book" implies the action of selling, the object
is a book, the actor is John, and the direction of the event is toward Mary.
The system is based on lexically driven pattern-action routines which allow
the parser to fill in the various actors, objects, actions and directions.

There are several reasons that Conceptual Analysis fits the domain of
cockpit-speech particularly well. The analyzer is lexically based and no
grammatical parse is done. The utterances in cockpit speech tend to be
short and simple, expressing a single uncomplicated concept which is more
easily handled by the CA analyzer. The problems with the CA approach are
due primarily to its lexically based approach. Extensions to the vocabulary
necessitate new pattern-action routines. Adding a single new verb may not
only require a new pattern-action routine, but could require several new

27




routines to handle the interaction of the new routine with the alread)}
defined pattern-action space.

8.6.4 System Design and Specifications

The design of this understanding system is built with the intent of
providing a tunable framework for demonstrating how CA works as a
semantic analysis in the domain of cockpit speech. Our hope is that by
refining the pattern-action routines and tuning the situational scripts we can
provide a system which is good at understanding the cockpit speech
collected by Lizza et al. The following diagram represents the high level
design of the system.

"Arm them up"

( Lexical Analysis)

ain-Verb-> "Arm
Pronoun->"Them"

Preposition->"Up"

C‘Situa;onal Scripts Arm Tissiie Conceptual Analy&

Actor:"F-16 #13425"

Missi Act Action:PTRANS
Object:ARM_LOCK

Direction: TO "missiles”
FROM "F-16

Actor<=="F-16 #1342‘5-/ #13425

Figure 8-5.

In figure 8-5 the interaction between the situational scripts and concep-
tual analyzer allows the analyzer to fill in the values in the primitive action
frame PTRANS (Physical Transaction.) PTRANS was chosen because
conceptually arming/locking missiles can be thought of as physically placing
a lock on the missiles which changes the attribute of the missiles. This is
similar to the way that locking a door changes the physical properties of the
door.

The choice of PTRANS and the slots to fill within PTRANS is made by the
pattern-action routine that is based on the verb "arm". By altering these
pattern-action routines we can alter the behavior of the system to respond
better to the input. The danger here lies in writing pattern-action routines
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which map every utterance in the domain. The resolution for this is to try
to develop a minimum of pattern-action routines necessary to represent the
concepts of the domain and also to train and test on different utterances.
There is also some control in the situational scripts which to control the
entry and exit from one script to another and the inferring power of the
script.

In terms of the design specifications, the system is built such that it
takes corrected input utterances, i.e., what was spoken is what is input. The
system is said to have correctly understood the utterance if it produces a
semantic representation consistent with both the input and context and
produces the same semantic representation for paraphrases of the
utterance.

8.6.5 Implementation

The system is implemented in Common Lisp with Flavors on the TI
Explorer System. The Conceptual Analyzer is based on the work of
Birnbaum and Selfridge [BIRN81] and Reisbeck and Schank [REIS76,
SCHA81.] The scripts are based on the work of Schank and Abelson
[SCHA77.] The training and test utterances come from the cockpit-speech
study mentioned in the introduction [LIZZ87.]

8.6.6 Testing

The system will be tested on utterances not used in the building and
tuning of the understanding system. For each situation in the cockpit-
speech study there are approximately 40 utterances. Approximately half of
these utterances will be used in building the system and the other half will
be used to test the final version. None of this testing data will be used to
further tune the system so as to have a good measure of the system's
accuracy. An overall accuracy rate will be generated based on the correct
analyses of the utterances and some of error analysis to show where the
system's frailties lay.
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